National Semiconductor

LM1577/LM2577

SIMPLE SWITCHER ${ }^{\circledR}$ Step-Up Voltage Regulator

General Description

The LM1577/LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), flyback, and forward converter switching regulators. The device is available in three different output voltage versions: $12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable.
Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and flyback transformers designed to work with these switching regulators.
Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and undervoltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.

Connection Diagrams

Features

- Requires few external components
- NPN output switches 3.0 A , can stand off 65 V
- Wide input voltage range: 3.5 V to 40 V
- Current-mode operation for improved transient response, line regulation, and current limit
- 52 kHz internal oscillator
- Soft-start function reduces in-rush current during start-up
- Output switch protected by current limit, under-voltage lockout, and thermal shutdown

Typical Applications

- Simple boost regulator
- Flyback and forward regulators
- Multiple-output regulator

Ordering Information

Temperature Range	Package Type	Output Voltage			NSC Package Drawing	Package
		12V	15V	ADJ		
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	24-Pin Surface Mount	LM2577M-12	LM2577M-15	LM2577M-ADJ	M24B	SO
	16-Pin Molded DIP	LM2577N-12	LM2577N-15	LM2577N-ADJ	N16A	N
	5-Lead Surface Mount	LM2577S-12	LM2577S-15	LM2577S-ADJ	TS5B	TO-263
	5-Straight Leads	LM2577T-12	LM2577T-15	LM2577T-ADJ	T05A	TO-220
	5-Bent Staggered	LM2577T-12	LM2577T-15	LM2577T-ADJ	T05D	TO-220
	Leads	Flow LB03	Flow LB03	Flow LB03		
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$	4-Pin TO-3	LM1577K-12/883L/	M1577K-15/883	LM1577K- ADJ/883	K04A	TO-3

Typical Application

Note: Pin numbers shown are for TO-220 (T) package.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	45 V
Output Switch Voltage	65 V
Output Switch Current (Note 2)	6.0 A
Power Dissipation	Internally Limited
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
\quad (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$

Minimum ESD Rating
($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
2 kV

Operating Ratings

Supply Voltage	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$
Output Switch Voltage	$0 \mathrm{~V} \leq \mathrm{V}_{\text {SWITCH }} \leq 60 \mathrm{~V}$
Output Switch Current	$\mathrm{I}_{\text {SWITCH }} \leq 3.0 \mathrm{~A}$
Junction Temperature Range	
LM1577	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$
LM2577	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$

Electrical Characteristics—LM1577-12, LM2577-12

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{SWITCH}}=0$.

Symbol	Parameter	Conditions	Typical	LM1577-12 Limit (Notes 3, 4)	LM2577-12 Limit (Note 5)	Units (Limits)
SYSTEM PARAMETERS Circuit of Figure 1 (Note 6)						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$	12.0	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
$\frac{\Delta \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV}(\max) \end{gathered}$
$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta_{\text {LOAD }}}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	
η	Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$	80			\%
DEVICE PARAMETERS						
$\mathrm{I}_{\text {S }}$	Input Supply Current	$\mathrm{V}_{\text {FEEDBACK }}=14 \mathrm{~V}$ (Switch Off)	7.5	10.0/14.0	10.0/14.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
		$\begin{array}{\|l\|} \hline I_{\text {SWITCH }}=2.0 \mathrm{~A} \\ \mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle) } \end{array}$	25	50/85	50/85	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
V_{UV}	Input Supply Undervoltage Lockout	$\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$	2.90	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	
f_{0}	Oscillator Frequency	Measured at Switch Pin $I_{\text {SWITCH }}=100 \mathrm{~mA}$	52	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \end{gathered}$
$\mathrm{V}_{\text {REF }}$	Output Reference Voltage	Measured at Feedback Pin $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	12	$\begin{aligned} & 11.76 / 11.64 \\ & 12.24 / 12.36 \end{aligned}$	$\begin{aligned} & 11.76 / 11.64 \\ & 12.24 / 12.36 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
$\frac{\Delta \mathrm{V}_{\mathrm{REF}}}{\Delta \mathrm{~V}_{\mathrm{IN}}}$	Output Reference Voltage Line Regulator	$\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V	7			mV
$\mathrm{R}_{\text {FB }}$	Feedback Pin Input Resistance		9.7			k Ω
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	370	$\begin{aligned} & 225 / 145 \\ & 515 / 615 \end{aligned}$	$\begin{aligned} & 225 / 145 \\ & 515 / 615 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$ (min) μ mho(max)

Electrical Characteristics-LM1577-15, LM2577-15
(Continued)
Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

Symbol	Parameter	Conditions	Typical	LM1577-15 Limit $($ Notes 3, 4)	LM2577-15 Limit $($ Note 5)	Units (Limits)
DEVICE PARAMETERS						
	NPN Switch	$V_{\text {COMP }}=2.0 \mathrm{~V}$	4.3			
	Current Limit			$3.7 / 3.0$	$3.7 / 3.0$	$\mathrm{~A}(\min)$

Electrical Characteristics—LM1577-ADJ, LM2577-ADJ

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature
Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FEEDBACK }}=\mathrm{V}_{\text {REF }}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

Symbol	Parameter	Conditions	Typical	LM1577-ADJ Limit (Notes 3, 4)	LM2577-ADJ Limit (Note 5)	Units (Limits)
SYSTEM PARAMETERS Circuit of Figure 3 (Note 6)						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$	12.0	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	$\begin{aligned} & 11.60 / 11.40 \\ & 12.40 / 12.60 \end{aligned}$	V V (min) V (max)
$\overline{\Delta \mathrm{V}_{\text {OUT }} /}$ $\Delta V_{\text {IN }}$	Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	
$\Delta \mathrm{V}_{\text {OUT }} /$ $\Delta l_{\text {LOAD }}$	Load Regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \text { to } 800 \mathrm{~mA} \end{aligned}$	20	50/100	50/100	
η	Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$	80			\%
DEVICE PARAMETERS						
$\mathrm{I}_{\text {s }}$	Input Supply Current	$\mathrm{V}_{\text {FEEDBACK }}=1.5 \mathrm{~V}$ (Switch Off)	7.5	10.0/14.0	10.0/14.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{max}) \end{gathered}$
		$\begin{aligned} & \mathrm{I}_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle) } \end{aligned}$	25	50/85	50/85	
V_{UV}	Input Supply Undervoltage Lockout	$\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$	2.90	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	$\begin{aligned} & 2.70 / 2.65 \\ & 3.10 / 3.15 \end{aligned}$	V $\mathrm{V}(\min)$ $\mathrm{V}(\max)$
f_{0}	Oscillator Frequency	Measured at Switch Pin $\mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA}$	52	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{aligned} & 48 / 42 \\ & 56 / 62 \end{aligned}$	$\begin{gathered} \hline \mathrm{kHz} \\ \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {REF }}$	Reference Voltage	Measured at Feedback Pin $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \text { to } 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	1.230	$\begin{aligned} & 1.214 / 1.206 \\ & 1.246 / 1.254 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.214 / 1.206 \\ & 1.246 / 1.254 \\ & \hline \end{aligned}$	V $\mathrm{V}(\min)$ $\mathrm{V}(\max)$
$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{REF} /} \\ & \Delta \mathrm{V}_{\mathrm{IN}} \end{aligned}$	Reference Voltage Line Regulation	$\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$ to 40 V	0.5			mV
I_{B}	Error Amp Input Bias Current	$\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	100	300/800	300/800	
G_{M}	Error Amp Transconductance	$\begin{aligned} & \mathrm{I}_{\text {COMP }}=-30 \mu \mathrm{~A} \text { to }+30 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	3700	$\begin{aligned} & 2400 / 1600 \\ & 4800 / 5800 \end{aligned}$	$\begin{aligned} & 2400 / 1600 \\ & 4800 / 5800 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$ (min) μ mho(max)
$\mathrm{A}_{\text {VOL }}$	Error Amp Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{COMP}}=1.1 \mathrm{~V} \text { to } 1.9 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{COMP}}=1.0 \mathrm{M} \Omega \text { (Note 7) } \end{aligned}$	800	500/250	500/250	$\begin{gathered} \mathrm{V} / \mathrm{V} \\ \mathrm{~V} / \mathrm{V}(\min) \end{gathered}$

Electrical Characteristics—LM1577-ADJ, LM2577-ADJ (Continued)
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those in bold type face apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FEEDBACK }}=\mathrm{V}_{\text {REF }}$, and $\mathrm{I}_{\text {SWITCH }}=0$.

Symbol	Parameter	Conditions	Typical	LM1577-ADJ Limit $($ Notes 3, 4)	LM2577-ADJ Limit $($ Note 5)	Units (Limits)

DEVICE PARAMETERS

	Error Amplifier Output Swing	Upper Limit $\mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V}$	2.4	2.2/2.0	2.2/2.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\mathrm{~min}) \end{gathered}$
		Lower Limit $\mathrm{V}_{\text {FEEDBACK }}=1.5 \mathrm{~V}$	0.3	0.40/0.55	0.40/0.55	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
	Error Amp Output Current	$\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=1.0 \mathrm{~V} \end{aligned}$	± 200	$\begin{aligned} & \pm 130 / \pm 90 \\ & \pm 300 / \pm 400 \end{aligned}$	$\begin{gathered} \pm 130 / \pm 90 \\ \pm 300 / \pm 400 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{min})$ $\mu \mathrm{A}$ (max)
l_{ss}	Soft Start Current	$\begin{aligned} & \mathrm{V}_{\text {FEEDBACK }}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {COMP }}=0 \mathrm{~V} \end{aligned}$	5.0	$\begin{aligned} & \text { 2.5/1.5 } \\ & 7.5 / 9.5 \end{aligned}$	$\begin{aligned} & \text { 2.5/1.5 } \\ & 7.5 / 9.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{min})$ $\mu \mathrm{A}$ (max)
D	Maximum Duty Cycle	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\text {SWITCH }}=100 \mathrm{~mA} \end{aligned}$	95	93/90	93/90	$\begin{gathered} \% \\ \%(\min) \end{gathered}$
$\Delta \mathrm{I}_{\text {SWITCH }} /$ $\Delta \mathrm{V}_{\text {COMP }}$	Switch Transconductance		12.5			A/V
I_{L}	Switch Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {SWITCH }}=65 \mathrm{~V} \\ & \mathrm{~V}_{\text {FEEDBACK }}=1.5 \mathrm{~V} \text { (Switch Off) } \end{aligned}$	10	300/600	300/600	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Switch Saturation Voltage	$\begin{aligned} & I_{\text {SWITCH }}=2.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {COMP }}=2.0 \mathrm{~V} \text { (Max Duty Cycle) } \end{aligned}$	0.5	0.7/0.9	0.7/0.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
	NPN Switch Current Limit	$\mathrm{V}_{\text {COMP }}=2.0 \mathrm{~V}$	4.3	$\begin{aligned} & 3.7 / 3.0 \\ & 5.3 / 6.0 \end{aligned}$	$\begin{aligned} & 3.7 / 3.0 \\ & 5.3 / 6.0 \end{aligned}$	A $A(\min)$ $A(\max)$
THERMAL PARAMETERS (All Versions)						
$\begin{aligned} & \hline \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \\ & \hline \end{aligned}$	Thermal Resistance	K Package, Junction to Ambient K Package, Junction to Case	$\begin{aligned} & 35 \\ & 1.5 \end{aligned}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\begin{aligned} & \hline \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \\ & \hline \end{aligned}$		T Package, Junction to Ambient T Package, Junction to Case	$\begin{gathered} 65 \\ 2 \\ \hline \end{gathered}$			
θ_{JA}		N Package, Junction to Ambient (Note 8)	85			
θ_{JA}		M Package, Junction to Ambient (Note 8)	100			
θ_{JA}		S Package, Junction to Ambient (Note 9)	37			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Due to timing considerations of the LM1577/LM2577 current limit circuit, output current cannot be internally limited when the LM1577/LM2577 is used as a step-up regulator. To prevent damage to the switch, its current must be externally limited to 6.0A. However, output current is internally limited when the LM1577/LM2577 is used as a flyback or forward converter regulator in accordance to the Application Hints.

Note 3: All limits guaranteed at room temperature (standard type face) and at temperature extremes (boldface type). All limits are used to calculate Outgoing Quality Level, and are 100% production tested.
Note 4: A military RETS electrical test specification is available on request. At the time of printing, the LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883 RETS specifications complied fully with the boldface limits in these columns. The LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883 may also be procured to Standard Military Drawing specifications
Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (boldface type). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.
Note 6: External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM1577/LM2577 is used as shown in the Test Circuit, system performance will be as specified by the system parameters

Note 7: A $1.0 \mathrm{M} \Omega$ resistor is connected to the compensation pin (which is the error amplifier's output) to ensure accuracy in measuring Avol. In actual applications, this pin's load resistance should be $\geq 10 \mathrm{M} \Omega$, resulting in $\mathrm{A}_{\text {VoL }}$ that is typically twice the guaranteed minimum limit.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

5-Lead TO-263 (S)
Order Number LM2577S-12, LM2577S-15 or LM2577S-ADJ
NS Package Number TS5B

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

